แบคทีเรียอะซิติก : สรีรวิทยาและการประยุกต์ใช้ในอุตสาหกรรม

Acetic acid bacteria : physiology and industrial applications

  • ณัฏฐ์สรัล สายชนะ
Keywords: แบคทีเรียอะซิติก, การหมักแบบออกซิเดทีฟ, น้ำส้มสายชู, เอนไซม์บนเยื่อหุ้มเซลล์, โพลีแซคคาไรด์, อนุพันธ์ของน้ำตาล, Acetic acid bacteria, Oxidative fermentation, Vinegar, Membrane-bound enzymes, Polysaccharides, Sugar derivatives

Abstract

          แบคทีเรียอะซิติกเป็นแบคทีเรียแกรมลบที่สามารถผลิตกรดอะซิติกได้จากเอทานอล โดยเป็นแบคทีเรียที่สามารถเจริญเติบโตได้ในเฉพาะสภาวะที่มีออกซิเจนเท่านั้น แบคทีเรียกลุ่มนี้มีความสามารถในการออกซิไดซ์สารประกอบแอลกอฮอล์น้ำตาล น้ำตาลแอลกอฮอล์ และน้ำ ตาลกรดหลาย ๆ ชนิด โดยการออกซิไดซ์จะเกิดขึ้นอย่างไม่สมบูณณ์ เป็นผลให้มีการสะสมของผลผลิตออกซิไดซ์ในอาหารเลี้ยงเชื้อเป็นปริมาณมาก ซึ่งกระบวนการออกซิไดซ์ที่ไม่สมบูรณ์นี้จะเกี่ยวข้องกับระบบลูกโซ่ การหายใจของแบคทีเรียกลุ่มนี้ และเรียกว่าเป็นกระบวนการ oxidative ermentation ซึ่งเป็นคุณสมบัติเด่นที่ทำให้เชื้อแบคทีเรียอะซิติกถูกนำมาใช้ในการผลิตสารประกอบที่มีความสำคัญในอุตสาหกรรมมากมาย ยกตัวอย่างเช่น การผลิตน้ำส้มสายชูซึ่งเป็นผลิตภัณฑ์ปรุงแต่งรสอาหาร หรือการผลิต dihydroxyacetone การผลิตน้ำตาล L-sorbose, D-fructose, D-xylulose, L-ribulose, L-erythrulose, 2-keto-D-gluconic acid, 5-keto-D-gluconic acid และรวมถึงสารประกอบคีโตนแบบวงชนิดต่าง ๆ และแบคทีเรียอะซิติกบางชนิดยังสามารถผลิต protocatechuic acid ซึ่งเป็นสารประกอบที่มีคุณสมบัติต้านอนุมูลอิสระที่ถูกนำมาใช้ในเชิงเภสัชศาสตร์ นอกจากนี้ยังพบว่าแบคทีเรียอะซิติกบางชนิดสามารถผลิตโพลีแซคคาไรด์แบบต่าง ๆ เช่น เซลลูโลส ฟรุกแทน และโพลีแซคคาไรด์แบบอื่น ๆ ซึ่งสามารถนำไปประยุกต์ในด้านต่าง ๆไม่ว่าจะเป็นอุตสาหกรรมอาหาร เภสัชศาสตร์ และด้านวัสดุศาสตร์

 

          Acetic acid bacteria are Gram-negative and strictly aerobic bacteria which are able to produce acetic acid from ethanol. These bacteria have the ability to incompletely oxidize alcohols, sugars, sugar alcohols and sugar acids to accumulate high amounts of the oxidized products in the culture medium. The so-called ‘oxidative fermentation’ known to link with the respiratory chain of these bacteria is a unique feature applicable for industrial applications. Acetic acid bacteria have been used for the production of vinegar and also dihydroxyacetone. They are also used in the production of L-sorbose, D-fructose, D-xylulose, L-ribulose, L-erythrulose, 2-keto-D-gluconic acid, 5-keto-D-gluconic acid and some cyclic ketones. Some strains of acetic acid bacteria also have the ability to produce protocatechuic acid, which is an antioxidant used in pharmaceutical applications. Moreover, some acetic acid bacteria also produce high amounts of polysaccharides, such as cellulose, fructan, and other polysaccharides, of which can be applied as the new materials for food industries, pharmaceutical science, and material science.

References

1. Yamada Y, Yukphan P. Genera and species in acetic acid bacteria. Int J Food Microbiol 2008;125:15-24.
2. Yukphan P, Malimas T, Muramatsu Y, Takahashi M, Kaneyasu M, Tanasupawat S, et al. Tanticharoenia sakaeratensis gen. nov., sp. nov., a new osmotolerant acetic acid bacterium in the α-proteobacteria. Biosci Biotechnol Biochem 2008;72:672-6.
3. Yukphan P, Malimas T, Muramatsu Y, Takahashi M, Kaneyasu M, Potacharoen W, et al. Ameyamaea chiangmaiensis gen. nov., sp. nov., an acetic acid bacterium in the α-proteobacteria. Biosci Biotechnol Biochem 2009;73:2156-62.
4. Yukphan P, Malimas T, Muramatsu Y, Potacharoen W, Tanasupawat S, Nakagawa Y, et al. Neokomagataea gen. nov., with descriptions of Neokomagataea thailandica sp. nov. and Neokomagataea tanensis sp.
nov., osmotolerant acetic acid bacteria of the α-proteobacteria. Biosci Biotechnol Biochem
2011;75:419-26.
5. Yamada Y. Transfer of Gluconacetobacter kakiaceti, Gluconacetobacter medellinensis and luconacetobacter maltaceti to the genus Komagataeibacter as Komagataeibacter kakiaceti comb. nov., Komagataeibacter mede l l i n e n s i s c o m b . n o v . a n d Komagataeibacter maltaceti comb. nov. Int
J Syst Evol Microbiol 2014;64:1670-2.
6. Mamlouk D, Gullo M. Acetic acid bacteria: physiology and carbon sources oxidation. Indian J Microbiol 2013;53:377-84.
7. Raspor P, Goranovič D. Biotechnological applications of acetic acid bacteria. Crit Rev Biotechnol 2008;28:101-24.
8. Bartowsky EJ, Henschke PA. Acetic acid bacteria spoilage of bottled red wine-A review. Int J Food Microbiol 2008;125:60-70.
9. Sengun IY, Karabiyikli S. Importance of acetic acid bacteria in food industry. Food Control 2011;22:647-56.
10. Gupta A, Singh VK, Qazi GN, Kumar A. Gluconobacter oxydans: Its biotechnological applications. J Mol Microbiol Biotechnol 2001;3:445-56.
11. Matsushita K, Toyama H, Adachi O. Respiratory chains and bioenergetics of acetic acid bacteria. Adv Microb Physiol 1994;36:247-301.
12. Adachi O, Ano Y, Toyama H, Matsushita K. Modern Biooxidation: Enzymes, Reactions and Applications. Weinheim: Wiley-VCH Verlag GmbH; 2007.
13. Miura H, Mogi T, Ano Y, Migita CT, Matsutani M, Yakushi T, et al. Cyanide-insensitive quinol oxidase (CIO) from Gluconobacter oxydans is a unique terminal oxidase subfamily of cytochrome bd. J Biochem 2013;153:535-45.
14. Gullo M, Verzelloni E, Canonico M. Aerobic submerged fermentation by acetic acid bacteria for vinegar production: process and biotechnological aspects. Process Biochem 2014;49:1571-9.
15. Schlepütz T, Gerhards JP, Büchs J. Ensuring constant oxygen supply during inoculation is essential to obtain reproducible results with obligatory aerobic acetic acid bacteria in vinegar production. Process Biochem
2013;48:398-405.
16. Qi Z, Yang H, Xia X, Xin Y, Zhang L, Wang W, et al. A protocol for optimization vinegar fermentation according to the ratio of oxygen consumption versus acid yield. J Food Eng 2013;116:304-9.
17. Moonmangmee D, Fujii Y, Toyama H, Theeragool G, Lotong N, Matsushita K, et al. Purification and characterization of membrane-bound quinoprotein cyclic alcohol dehydrogenase from Gluconobacter frateurii CHM 9. Biosci Biotechnol Biochem 2001;65:2763-72.
18. Saeki A, Theeragool G, Matsushita K, Toyama H, Lothong N, Adachi O. Development of thermotolerant acetic acid bacteria useful for vinegar fermentation at higher temperatures. Biosci Biotechnol Biochem 1997;61:138-45.
19. Lu SF, Lee FL, Chen HK. A thermotolerant and high acetic acid-producing bacterium Acetobacter sp. I14-2. J Appl Microbiol 1999;86:55-62.
20. Kanchanarach W, Theeragool G, Inoue T, Yakushi T, Adachi O, Matsushita K. Acetic acid fermentation of Acetobacter pasteurianus: relationship between acetic acid resistance and pellicle polysaccharide formation. Biosci Biotechnol Biochem 2010;74:1591-7.
21. Perumpuli PABN, Watanabe T, Toyama H. Identification and characterization of thermotolerant acetic acid bacteria strains isolated from coconut water vinegar in Sri Lanka. Biosci Biotechnol Biochem 2014;78:533- 41.
22. Ndoye B, Lebecque S, Dubois-Dauphin R, Tounkara L, Guiro AT, Kere C, et al. Thermoresistant properties of acetic acids bacteria isolated from tropical products of Sub-Saharan Africa and destined to industrial
vinegar. Enzymes Microb Technol 2006;39:916-23.
23. Matsutani M, Nishikura M, Saichana N, Hatano T, Masud-Tippayasak U, Theergool G, et al. Adaptive mutation of Acetobacter pasteurianus SKU1108 enhances acetic acid fermentation ability at high temperature. J Biotechnol 2013;165:109-19.
24. Shinagawa E, Ano Y, Yakushi T, Adachi O, Matsushita K. Solubilization, purification, and properties of membrane-bound D-glucono-δ-lactone hydrolase from Gluconobacter oxydans. Biosci Biotechnol Biochem
2009;73:241-4.
25. Matsushita K, Shinagawa E, Ameyama M. D-gluconate dehydrogenase from bacteria, 2-keto-D-gluconate-yielding, membranebound. Methods Enzymol 1982;89:187-93.
26. Shinagawa E, Matsushita K, Adachi O, Ameyama M. D-Gluconate dehydrogenase, 2-keto-Dgluconate yielding, from Gluconobacter dioxyacetonicus: Purification and characterization. Agricult Biol Chem 1984;48:1517-22.
27. Matsushita K, Fujii Y, Ano Y, Toyama H, Shinjoh M, Tomiyama N, et al. 5-keto-D-gluconate production is catalyzed by a quinoprotein glycerol dehydrogenase, major polyol dehydrogenase, in Gluconobacter species. Appl Environ Microbiol 2003;69:1959-66.
28. Shinagawa E, Matsushita K, Adachi O, Ameyama M. Purification and characterization of 2-ketogluconate dehydrogenase from Gluconobacter melanogenus. Agricult Biol Chem 1981;45:1079-89.
29. Reichstein T, Grüssner A. Eine ergiebige synthese der L-ascorbinsäure (vitamin C). Helv Chim ACTA 1934;17:311-28.
30. Gray BE, inventor. Preparation of 2-ketogulonic acid and its salts. United States patent US 2421611. 1947 May 4.
31. Salusjarvi T, Povelainen M, Hvorsley N, Eneyskaya EV, Kulminskaya AA, Shabalin KA, et al. Cloning of a luconate/ polyol dehydrogenase gene from Gluconobacter suboxydans IFO 12528, characterization of the
enzyme and its use for the production of 5-ketogluconate in a recombinant Escherichia coli strain. Appl Microbiol Biotechnol 2004;65:306-14.
32. Stottmeister U, Aurich A, Wilde H, Andersch J, Schmidt S, Sicker D. White biotechnology for green chemistry: fermentative 2-oxocarboxylic acids as novel building blocks for subsequent chemical synthesis. J Ind Microbiol Biotechnol 2005;32:651-64.
33. Toyama H, Furuya N, Saichana I, Ano Y, Adachi O, Matsushita K. Membrane-bound, 2-keto-Dgluconate-
yielding D-gluconate dehydrogenase from “ Gluconobacter dioxyacetonicus” IFO 3271: Molecular properties and gene disruption. Appl Environ Microbiol 2007;73:6551-6.
34. Saichana I, Moonmangmee D, Adachi O, Matsushita K, Toyama H. Screening of thermotolerant Gluconobacter strains for production of 5-keto-D-gluconic acid and disruption of flavin adenine inucleotidecontaining D-gluconate dehydrogenase. Appl Environ Microbiol 2009;75:4240-7.
35. Adachi O, Hours RA, Akakabe Y, Tanasupawat S, Yukphan P, Shinagawa E, et al. Production of 4-keto-D-arabonate by oxidative fermentation with newly isolated Gluconacetobacter liquefaciens. Biosci Biotechnol Biochem 2010;74:2555-8.
36. Adachi O, Hours RA, Shinagawa E, Akakabe Y, Yakushi T, Matsushita K. Formation of 4-keto- D-aldopentoses and 4-pentulosonates (4-keto- D-pentonates) with unidentified membranebound enzymes from acetic acid bacteria. Biosci Biotechnol Biochem 2011;75:1801-6.
37. Adachi O, Hours RA, Shinagawa E, Akakabe Y, Yakushi T, Matsushita K. Enzymatic synthesis of 4-pentulosonate (4-keto-D-pentonate) from D-aldopentose and D-pentonate by two different pathways using membrane enzymes of acetic acid bacteria. Biosci Biotechnol Biochem 2011;75:2418-20.
38. Ameyama M, Shinagawa E, Matsushita K, Adachi O. Solubilization, purification and properties of membrane-bound glycerol dehydrogenase from Gluconobacter industrius. Agricult Biol Chem 1985;49:1001-10.
39. Shinagawa E, Matsushita K, Toyama H, Adachi O. Production of 5-ketogluconate by acetic acid bacteria is catalyzed by pyrroloquinoline quinone (PQQ)-dependent membrane-bound D-gluconate dehydrogenase. J Mol Catal B: Enzymatic 1999;6:341-50.
40. Miyazaki T, Tomiyama N, Shinjoh M, Hoshino T. Molecular cloning and functional expression of D-sorbitol dehydrogenase from Gluconobacter suboxydans IFO 3255, which requires for pyrroloquinoline quinone and
hydrophobic protein SldB for activity development in E. coli. Biosci Biotechnol Biochem 2002;66:262-70.
41. Sugisawa T, Hoshino T. Purification and properties of membrane-bound D-sorbitol dehydrogenase from Gluconobacter suboxydans IFO 3255. Biosci Biotechnol Biochem 2002;66:57-64.
42. Hoshino T, Sugisawa T, Shinjoh M, Tomiyama N, Miyazaki T. Membrane-bound D-sorbitol dehydrogenase of Gluconobacter suboxydans I F O 3 2 5 5 - e n z y m a t i c a n d g e n e t i c characterization. Bioch Biophys Acta 2003;1647:278-88.
43. Adachi O, Fujii Y, Ghaly MF, Toyama H, Shinagawa E, Matsushita K. Membrane-bound quinoprotein D-arabitol dehydrogenase of Gluconobacter suboxydans IFO 3257: a versatile enzyme for oxidative fermentation
of various ketoses. Biosci Biotechnol Biochem 2001;65:2755-62.
44. Moonmangmee D, Adachi O, Ano Y, Shinagawa E, Toyama H, Theeragool G, et al. Isolation and characterization of thermotolerant Gluconobacter strains catalyzing oxidative fermentation at higher temperatures. Biosci Biotechnol Biochem 2000;64:2306-15.
45. Moonmangmee D, Adachi O, Shinagawa E, Toyama H, Theeragool G, Lotong N, et al. L-erythrulose production by oxidative fermentation is catalyzed by PQQ-containing membrane-bound dehydrogenase. Biosci Biotechnol Biochem 2002;66:307-18.
46. Toyama H, Soemphol W, Moonmangmee D, Adachi O, Matsushita K. Molecular properties of membrane-bound FAD-containing D-sorbitol dehydrogenase from thermotolerant Gluconobacter frateurii isolated from Thailand. Biosci Biotechnol Biochem 2005;69:1120-9.
47. Soemphol W, Adachi O, Matsushita K, Toyama H. Distinct physiological roles of two membrane-bound dehydrogenases responsible for D-sorbitol oxidation in Gluconobacter frateurii. Biosci Biotechnol Biochem 2008;72:842-50.
48. Hattori H, Yakushi T, Matsutani M, Moonmangmee D, Toyama H, Adachi O, et al. High-temperature sorbose fermentation with thermotolerant Gluconobacter frateurii CHM43 and its mutant strain adapted to higher
temperature. Appl Microbiol Biotechnol 2012;95:1531-40.
49. Shinagawa E, Adachi O, Ano Y, Yakushi T, Matsushita K. Purification and characterization of membrane-bound 3-dehydroshikimate dehydratase from Gluconobacter oxydans IFO 3244, a new enzyme catalyzing extracellular protocatechuate formation. Biosci Biotechnol Biochem 2010;74:1084-8.
50. Kakkar S, Bais S. A Review on protocatechuic acid and its pharmacological potential. ISRN Pharmacol 2014;2014:1-9.
51. Vangnai AS, Promden W, De-Eknamkul W, Matsushita K, Toyama H. Molecular characterization and heterologous expression of quinate dehydrogenase gene from Gluconobacter oxydans IFO3244. Biochem
Biokhimiia 2010;75:452-9.
52. Adachi O, Ano Y, Toyama H, Matsushita K. A novel 3-dehydroquinate dehydratase catalyzing extracellular formation of 3-dehydroshikimate by oxidative fermentation of Gluconobacter oxydans IFO 3244. Biosci
Biotechnol Biochem 2008;72:1475-82.
53. Keshk SM. Bacterial cellulose production and itsindustrial applicat io ns. J Bioprocess Biotech
2014;4:1-10.
54. Lee KY, Buldum G, Mantalaris A, Bismarck A. More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites. Macromol Biosci 2014;14:10-32.
55. Mohite BV, Patil SV. A novel biomaterial: bacterial cellulose and its new era applications: BC and its new era applications. Biotechnol Appl Biochem 2014;61:101-10.
56. Embuscado ME, Marks JS, BeMiller JN. Bacterial cellulose. II. Optimization of cellulose production by Acetobacter xylinum through response surface methodology. Food Hydrocolloid 1994;8:419-30.
57. Embuscado ME, Marks JS, BeMiller JN. Bacterial cellulose. I. Factors affecting the production of cellulose by Acetobacter xylinum. Food Hydrocolloid 1994;8:407-18.
58. Moonmangmee S, Toyama H, Adachi O, Theeragool G, Lotong N, Matsushit K. Purification and characterization of a novel polysaccharide involved in the pellicle produced by a thermotolerant Acetobacter
strain. Biosci Biotechnol Biochem 2002;66:777-83.
59. Moonmangmee S, Kawabata K, Tanaka S, Toyama H, Adachi O, Matsushita K. A novel polysaccharide involved in the pellicle formation of Acetobacter aceti. J Biosci Bioeng 2002;93:192-200.
60. Deeraksa A, Moonmangmee S, Toyama H, Yamada M, Adachi O, Matsushita K. Characterization and pontaneous mutation of a novel gene, polE, involved in pellicle formation in Acetobacter tropicalis SKU1100.
Microbiology 2005;151:4111-20.
61. Deeraksa A, Moonmangmee S, Toyama H, Adachi O, Matsushita K. Conversion of capsular polysaccharide, involved in pellicle formation, to extracellular polysaccharide by gale deletion in Acetobacter tropicalis. Biosci
Biotechnol Biochem 2006;70:2536-9.
62. Ali IAI, Akakabe Y, Moonmangmee S, Deeraksa A, Matsutani M, Yakushi T, et al. Structural characterization of pellicle polysaccharides of Acetobacter tropicalis SKU1100 wild type and mutant strains. Carbohydr Polymers 2011;86:1000-6.
63. Perumpuli PABN, Watanabe T, Toyama H. Pellicle of thermotolerant Acetobacter pasteurianus strains: characterization of the polysaccharides and of the induction patterns. J Biosci Bioeng 2014;118:134-8.
Published
2017-06-22